Effective Quality Improvement of Protein Crystals **under Microgravity** ---Recent Progress of Technical Development---微小重力環境での蛋白質結晶の高品質化と 最近の技術開発成果 2004.8. JAXA

Outline of JAXA(NASDA)-GCF Project

4

-		Mission	JAXA(NASDA)-GCF-1~6
301.311	High-quality Protein Crystallization Project	Launch from	Baikonur (Kazakhstan)
		Vehicle	Progress
		Landing at	Kazakhstan
	A	Spacecraft	Soyuz
	Experimental opportunities		2003~2005
			(twice a year, 6 opportunities)
		Duration	2~4 months
	Flight Facility		Granada Crystallization Facility (GCF) After 2004 (4 th flight), a new crystallization device developed by JAXA will be used.

Granada Crystallization Box (GCB)

Space Experiments

Mission	Odissea	NASDA-GCF#1	NASDA-GCF#2	JAXA-GCF#3	JAXA-GCF#4
Launch	25/09/2002	02/02/2003	29/08/2003	29/01/2004	11/08/2004
at	Baikonur (Kazakhstan)				
Vehicle	Progress				
Landing	07/12/2002	03/05/2003	28/10/2003	29/04/2004	19/10/2004
at	USA		Kaza	khstan	Sector (
Spacecraft	Space Shuttle		Soyuz		1
Duration	10 weeks	13 weeks	9 weeks	13 weeks	9 weeks
Flight Facility	Granada Crysta	Ilization Facility (GCF)		GCF and JCF (JAXA Crystallization Facility)
Number of GCBs (No. of protein samples)	2 GCBs (2 proteins)	46 GCBs (36 proteins)	69 GCBs (53 proteins)	50 GCBs (41 proteins)	28GCB (GTmethod) Total 37GCBs (38 proteins)
Protein for JAXA technical verification	2 proteins	1 protein	1 protein	2 proteins	6 proteins
Installation Location	a stratten	Russian Service Module	CGBA (US module) in ISS	CGBA	TBU/Cryogem-3M
40.00	1		25.0		

Crystallization of JAXA's Technical Verification Protein Alpha-Amylase JAXA's R&D Example: Alpha-Amylase (E.C.3.2.1.1)

- Derived from Aspergillus oryzae
- 476 amino acids
- M.W. 50,000
- Acidic protein

Catalyze the hydrolysis of the alpha-1,4 glycosidic linkage in starch

Protein structure 2.1Å (6TAA)

Acta Cryst(1991)B47, 535-544

Sample Preparation

Anion-exchange and hydrophobic chromatography were applied for further purification of the commercially available sample.

We performed 1-D simulation to optimize the crystallization condition.

Crystallization Alpha-Amylase on the Ground using PEG8000 as a Precipitant

 Highly cluster-like morphology
 Maximum resolution: 1.12Å (by seeding)

Grown on the ground

Crystallization of Alpha-Amylase in Space using PEG8000 as a precipitant

JAXA-GCF#1

- No cluster-like morphology
- Single crystal with same morphology as ground-grown crystal
- Maximum resolution: beyond 0.89Å (tentative)
 - May be the champion data among this M.W. proteins

Single crystal with different morphology

Odissea mission

Data extracted from PDB

Ground experiment □ Space experiment ▲ alpha-Amylase

Before X-ray Diffraction Data Collection...

- Harvest crystals from a capillary
 - Break the capillary
 - Shell the capillary like husking eggshell
 - Immerse a crystal in the appropriate harvest solution
- Prepare the appropriate harvest solution
 - 1-D Simulation Program and preliminary check
- Prepare the cryoprotectant solution
 - 20~30% glycerol is recommended

» See the poster No. P213

 Check if no ice formation is observed beforehand when it is flash-frozen

Crystal Data and X-ray Data Processing Statistics

Crystals Diffraction data	6TAA (Swift et al.*)	Ground experiment (Batch / Seeding)	Space experiment (GCB)**	Space experiment (GCB)
X-ray source	Conventional	BL12B2	BL12B2	
Wavelength(Å)		1	0.7	
Space Group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	
Cell constant (Å)	a=51.0, b=67.2, c=133.6 α=β=γ=90°	a=50.8, b=67.7, c=130.1 α=β=γ=90°	a=50.4, b=67.4, c=130.4 α=β=γ=90°	
Volume of the cell	457,960	447,187	442,807	
Maximum resolution(Å)	2.1	1.12	0.89	
Mosaicity		0.312(~1.4Å)	0.241(~0.9Å)	
Avarage of I/σ(I)		22.2	39.2	26.6
Rmerge(overall)		0.063(30-1.40 Å)	0.036(30-1.40 Å)	0.062(15-1.0 Å)
Rmerge(outer shell)		0.188(1.45-1.40 Å)	0.039(1.45-1.40 Å)	0.262(1.04-1.00 Å)
Completeness(overall)(%)		94.5(30-1.40 Å)	99.3(30-1.40 Å)	96.5(15-1.0 Å)
Completeness (outer shell)(%)		89.9(1.45-1.40 Å)	99.3(1.45-1.40 Å)	95.7 (1.04-1.00 Å)

*Swift, H.J. et al.:Acta Cryst., B47, 535-544 (1991)

**Calculated for the comparison with the data of the ground experiment.

Electron Density Map of Alpha-Amylase (tentative)

Crystal grown on the ground

Crystal grown in space

Alpha-Amylase crystals obtained in space

- The cluster-like formation was suppressed.
- The maximum resolution was improved and fine electron density map was obtained.
- The crystal with unfamiliar morphology was sometimes obtained.

Numerical Analysis of the Microgravity Effects

Expected Microgravity Effects

Mechanism	Effects on the crystal
Protein depletion zone (PDZ)	Suppression of the cluster formation
formation	
Impurity depletion zone (IDZ) formation	Suppression of the disorder
Suppression of the step bunching	
Suppression of the microcrystal capture	
Estimate PDZ and IDZ effects nume	erically in

the case of alpha-Amylase

Diffusive field around a growing crystal

In case of 30mg/ml alpha-Amylase in 20% PEG8000

Concentration of the protein around the crystal surface becomes lower if the viscosity of the solution is high.¹⁹

Depletion zone around the growing crystal (alpha-Amylase/PEG8000)

Protein depletion zone

Impurity depletion zone

The effects on DFR and IR are expected in case of alpa-Amylase using PEG8000 as a precipitant. 20

Depletion zone around the growing crystal (Lysozyme/NaCl)

If the viscosity of the solution is higher, the effects on DFR and IR can be expected.

Results of the Numerical Analysis

Suppression of the convection

- The protein and the impurity depletion zones are formed effectively.
- Improvement of the quality of the crystals can be expected.
- Suppression of the cluster-like morphology can be expected.
- The depletion zones can be expected in case of
 - Alpha-Amylase/PEG
 - × Lysozyme/NaCl
 - Lysozyme/NaCI+PEG8000
- The depletion zone effects are enhanced in high viscous solution
- To obtain high quality crystals in microgravity experiment
 - Use PEG as a precipitant
 - Add PEG to increase viscosity
 - » See the poster No. P203

Crystallization of JAXA's Technical Verification Protein Lysozyme

Crystallization of Lysozyme

- Method: Counter Diffusion Method
- Precipitant Solutions
 - I. 3% NaCl in 100mM Acetate buffer (pH 4.5)
 - II. 10% NaCl in 100mM Acetate buffer (pH 4.5)
 - III. 20% PEG8000 in 100mM Acetate buffer (pH 4.5)
 - IV. 3% NaCl and 20% PEG8000 in 100mM Acetate buffer (pH 4.5)
 - V. 12% NaCl and 20% PEG8000 in 100mM Acetate buffer (pH 4.5)

Experimental results for lysozyme

• The crystals grew in the experiments using the precipitants I, II, IV and V, but did not grow using III.

→ In case of lysozyme, PEG8000 was not sufficient to grow crystals, but did not inhibit the crystallization.

In space, we performed crystallization experiment of lysozyme using

12% NaCl and 20% PEG8000 in 100mM Acetate buffer (pH 4.5) as a precipitant

by GCB gel acupuncture method (JAXA-GCF#3, 2004, Jan-Apr).

Crystal Data and X-ray Data Processing Statistics (Tentative)

	1iee ^{*1} (Space crystal) (APCF)	Ground crystal (GCB)	Space crystal (GCB)
X-ray source	X11/BW7B	BL12B2	BL12B2
Space Group	P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2	P4 ₃ 2 ₁ 2
	a=b=77.06	a=b=77.3	a=b=78.0
Cell Constants ()	c=37.22	c=37.9	c=37.7
Max Resolution()	0.94-0.95	1.08	0.88
Mosicity	0.47	0.584~0.628	0.242~0.303
D manga 9/ (tatal)	5.2(~0.94)		6.9(~0.88)
Kinerge % (total)		3.3(~1.08)	4.0(~1.04)
Dmanga 9/ (autar)	32.9(0.94-0.96)		25.8(0.91-0.88)
Kinerge 76 (outer)		16.8(1.12-1.08)	6.6(1.11-1.04)
Completeness % (total)	98.9	92.3	89.9
Completeness 9/ (outer)	88.6(0.94-0.96)		81.4(0.91-0.88)
Completeness % (outer)		83.6(1.12-1.08)	86.9(1.11-1.04)

*1) Sauter et al., Acta Cryst., (2001) D57, 1119-1126 26

Data extracted from PDB

・地上実験□NASA宇宙実験▲ アミラーゼ ◆リゾチーム

27

The effect of the addition of PEGs

II. 10% NaCl

IV. 3% NaCI + 20% PEG8000

The crystals occurred 1 day after the start of experiment in both condition. PEG seemed to have generated the synergy effect, because it takes 1 week till the crystals occur using solution I (3% NaCl without PEG) as a precipitant.

Conclusions

- The lysozyme crystals grew with PEGs in combination with NaCl as precipitant solutions, though they did not grow with PEGs alone.
- We could get the highest resolution ever collected with lysozyme crystals grown in space.
- The addition of PEGs to the precipitant solution could brought about a synergistic effect. The utilization of PEGs will help to use lower concentration of salt solutions as a precipitant. 29

Comparison between Maximum Resolution of Crystals grown on the ground and in space

Data are collected from crystals grown in JAXA(NASDA)-GCF#1, #2, and #3 space experiments 30

Reasons for the successful results

- Microgravity effects
- Samples with high purity
- Counter-diffusion technique
- Polyethylene glycol for a precipitant
- Technical improvement of harvesting crystals from a capillary
- Proper cryoprotection

Acknowledgement ESA/ Dr. Olivier Minster CSIC-University of Granada/ Prof. García-Ruiz and the members of the laboratory **Belgian government** Russian Federal Space Agency and **RSC Energia** NASA